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Abstract Text 
Multiscale Problem: We developed MSM approach by incorporating coarse-grained 
molecular dynamics (CGMD) and dissipative particle dynamics (DPD) to describe platelet 
mechanotransduction induced by blood flow in cardiovascular pathologies which may 
initiate thrombosis1-5. 
 (1) Machine Learning (ML) for Modeling In Vitro Data 
Microscopy images were analyzed to obtain platelet geometric and physical parameters, 
meshed to determine contact area between aggregated platelets, and input into a neural 
network ML model to predict inter-platelet contact area (Fig. 1). In the training set, we 
select shear stresses of 1, 5 and 10 dyne/cm2. A feed-forward neural network ML model 
with 2 hidden-layers, each with 10 nodes (Fig. 1a) was trained with 75% of the data, with 
the remaining 25% as test data. Training loss reaches the minimum gradient when 
training epochs exceed 3000 (Fig. 1b). Independent in vitro experiments at a shear stress 
of 6.7 dyne/cm2 were used to test accuracy. Mean and standard deviation values of 
normalized contact area model predictions and experimental results (0.094±0.021 and 
0.092±0.021, respectively) suggests that our ML model accurately predicts the contact 
area for aggregated platelets and can be used in our multiscale modeling to validate the 
in silico results. 
(2) Machine Learning for Adaptive Discretization in Massive Multiscale Modeling 
While MSM sufficiently describes details at disparate spatial scales, no effective 
algorithm for adapting temporal scales to these diverse spatial scales exists. We 
propose a novel state-driven adaptive time-stepping (ATS) algorithm6,7 that adapts time 
stepsizes to the underlying biophysical phenomena: mesoscale DPD blood flow is 
simulated with 𝜇𝑠 timescale and microscale CGMD platelet is modeled with 𝑛𝑠 to 𝑝𝑠 
timescales. A ML-based framework trains to adapt the time stepsizes (Fig. 2a). Particle 
positions and momenta are inputs, and phases are described by the most significant 
attributes of states from inputs in first two layers- categorized by a neural network and 
labeled by a two components vector: time stepsize ∆𝑡 and state examination frequency 
𝜔. The simulation proceeds with a new time stepsize in 1/𝜔 steps. The ATS algorithm 
adjusts time stepsizes at its conclusion. The ATS algorithm was compared with 
traditional single time-stepping (STS) algorithm with relative errors along time of system 
kinetic energy, and distance between center of mass of two platelets (Fig 2b). The final 
states of aggregation in both algorithms are consistent with each other. Computing 
times using ATS for different simulations phases were cut by 20~75%. Conceptually, 
ATS ML corresponds to coarse-graining in time. 
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Fig. 1: (a) a NN-based framework for predicting contact area during platelet 
aggregation. (b) Training loss and evaluation loss (y-axis) trends vs. epochs (x-axis). 
 

 
Fig. 2: (a) a NN-based framework for adapting time stepsizes to platelet dynamics 
under shear stresses. (b) Accuracy analysis in energy and center of mass. 
 


